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We simulate directed site percolation on two lattices with four spatial and one timelike dimensions �simple
and body-centered hypercubic in space� with the standard single cluster spreading scheme. For efficiency, the
code uses the same ingredients �hashing, histogram reweighing, and improved estimators� as described by
Grassberger �Phys. Rev. E 67, 036101 �2003��. Apart from providing the most precise estimates for pc on these
lattices, we provide a detailed comparison with the logarithmic corrections calculated by �Janssen and Stenull
�Phys. Rev. E 69, 016125 �2004��. Fits with the leading logarithmic terms alone would give estimates of the
powers of these logarithms which are too big by typically 50%. When the next-to-leading terms are included,
each of the measured quantities �the average number of sites wetted at time t, their average distance from the
seed, and the probability of cluster survival� can be fitted nearly perfectly. But these fits would not be mutually
consistent. With a consistent set of fit parameters, one obtains still much improvement over the leading log
approximation. In particular we show that there is one combination of these three observables which seems
completely free of logarithmic terms.
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I. INTRODUCTION

Although it is well known that all critical phenomena
have logarithmic corrections at their upper critical dimen-
sions, and although the leading terms are easily calculated
from the renormalization group, it is in general not easy to
verify these predictions numerically. In equilibrium models,
one reason is that it is difficult to simulate a sufficiently large
system in high dimensions, both because of storage and of
CPU requirements. The other reason is that together with
powers of the logarithm of the system size L, one usually
also has terms of type log log L, etc. If these are not known
explicitly �and their computation is much more demanding�,
one has hardly any chance to verify the leading terms.

The situation is somewhat better in models with long-
range interactions �1� and in tricritical phenomena �2� where
the upper critical dimension is lower than in ordinary critical
phenomena. It is also better in models such as self-avoiding
walks �SAWs� or percolation, where one does not need to
simulate the entire lattice, but only the fractal objects with
much lower dimension. For SAWs, e.g., it was possible to
verify the structure of logarithmic corrections quite in detail
�3�, since there, one only has to simulate walks with dimen-
sion two and the next-to-leading terms in the field-theoretic
treatment could be calculated.

In the present Brief Report we study directed percolation
�DP�. There, the upper critical dimension is five. When in-
terpreted as a spreading phenomenon, this corresponds to
four spatial dimensions. Critical clusters then have spatial
fractal dimension Df =2, i.e., then it becomes also feasible to
study systems with very large correlation lengths. In addi-
tion, the leading and next-to-leading logarithmic terms have
been calculated recently from field theory �4�, so that we
have a good theoretical prediction to compare with.

We only study site percolation, but on two lattices, the
simple hypercubic �shc� lattice in four dimensions and the
body-centered hypercubic �bchc� lattice. The former has 2d

=8 neighbors which can be infected in each time step, the
latter has 2d=16 neighbors. We use the standard spreading
paradigm where we start with a single infected site and infect
in each time step neighboring sites with probability p. Sites
stay infective for one time step, after that they become sus-
ceptible again. We measure the average number N�t� of in-
fected sites, the rms distance R�t� of infected sites from the
seed site, and the probability P�t� that there is still at least
one infected site �i.e., that the cluster is still alive� at time t.
The total sample sizes are 5.5�107 clusters for the shc lat-
tice and 1.5�107 clusters for the bchc lattice, both with
tmax=8000.

The code used to simulate this is very similar to the one
used in �5� for high-dimensional ordinary percolation.

�1� We used hashing to store very large virtual lattices.
�2� In addition to the straightforward averages we also

estimated in each run two averages obtained by reweighing,
corresponding to one p value slightly above and to one p
value slightly below the point at which we simulate. This is
equivalent to histogram reweighing �6,7�, but avoids the
need for storing huge histograms.

�3� We used improved estimators for N�t� and R�t�, as
described in �5�. These estimators were found to lead to large
variance reduction �the same concept was used recently also
for random walks with memory, where it also gave substan-
tial improvements �8��. These estimators were found to lead
to large variance reduction. Essentially, the idea is not to
measure the actual number of offsprings in each generation
�and their distances from the seed�, but to measure the esti-
mated number of offsprings per active site �and their esti-
mated distances�. These estimates are made by counting the
number of free-neighboring sites and multiplying it by p.
This eliminates the fluctuations in the actual number of wet-
ted sites resulting from the random number generator. In-
deed, we found not only that the improved estimator gave
smaller variances than the standard estimator but also that
the covariances between the two happened to be negative
�we have no explanation for this lucky coincidence�. Thus
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we can optimize the estimator by taking that particular linear
combination which has the smallest variance. The resulting
errors for N�t� are shown in Fig. 1. We see a reduction by
roughly a factor of 3, corresponding to a reduction in CPU
time by a factor of 10. The improvement was even larger
�factor of �4� for R�t�. For P�t� no similar improved estima-
tor seems to exist.

II. RESULTS

Our main results are shown in Figs. 2–4. In each of them
we show our results for the shc lattice together with the
leading logarithmic term and with a fit based on the full
analytic results of �4�. The integration constants ti appearing
in the logarithms are the same for all three observables.

The results of �4� can be rewritten as

Xi = Xi
�0��ln

t

t0
− b ln ln

t

t1
+ ai��i

��1 + O��ln ln t/ln t�2,ln ln t/ln2 t,1/ln2 t�� �1�

with i=1, 2, and 3. Here,

X1 � N�t�, X2 � tP�t�, X3 � R2�t�/t , �2�

the exponents �i are equal to

�1 = 1/6, �2 = 1/2, �3 = 1/12, �3�

the other known quantities are b=1.302 04, a1
=0.1831, a2=−1.5193, a3=−1.7010, and t0 and t1 are un-
known integration constants from the renormalization-group
flow. Notice that t0 and t1 are not universal �they differ be-
tween models� but they are the same for all observables
within one model—although using different values of ti for
different observables could effectively take into account of
higher-order corrections.

The first observation is that the leading logarithms alone
are not sufficient to describe the data. Using only these
terms, i.e., making Ansätze Xi=Xi

�0��ln t
t0

��i, we would over-
estimate �P and �R by roughly 50%. The constant t0 can be
chosen such that a nearly perfect fit is obtained for N�t� at
large t. But this value of t0 gives bad results for the other two
variables. Also, N�t� is the variable which depends most sen-
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FIG. 1. �Color online� Log-log plot of statistical errors �one ��
of N�t� against t. The upper curves are for the usual estimates, the
lower ones are for the optimized improved estimates.
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FIG. 2. �Color online� Average number of infected sites, N�t�,
for the shc lattice. The three noisy curves are for p= pc and for p
= pc��pc. The other two curves show the leading log term
���ln�t / t0���

1/6 with t0�=2� and the full prediction of Janssen and
Stenull �4�, Eq. �1� with t0=0.5, t1=1.0.
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FIG. 3. �Color online� Cluster survival probability multiplied
by t, tP�t�, for the shc lattice. The meaning of the curves is as for
Fig. 2, except that the leading log term is ��ln�t / t0���

1/2 and that the
three data curves are separated by 4�pc. The values for t0, t1, and t0�
are the same as in Fig. 2.
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FIG. 4. �Color online� Squared cluster radius divided by t,
R2�t� / t, for the shc lattice. The meaning of the curves is again as for
Fig. 3, except that the leading log term is ��ln�t / t0���

1/12.
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sitively on the exact value of pc. It is mainly for the latter
that we need high statistics. Without a good estimate of pc
we could not get a decent estimate of the logarithmic correc-
tions from the leading terms alone. The same results were
obtained for the bchc lattice �not shown here�. Our estimates
for pc are

pc = 0.075 585 0 � 0.000 000 3 �bchc� ,

pc = 0.146 159 2 � 0.000 000 3 �shc� . �4�

This is to be compared to Ref. �9�, where the authors
studied steady-state DP with a weak rate h for “immigration”
�i.e., sites are turned infective with a rate h, even when they
have no infected neighbor�, and then considered the limit h
→0. The observable measured in �9� was the density of in-
fected sites. Such simulations are of course much more cum-
bersome. In addition to corrections from the limit h→0 one
also has finite-size corrections which are completely absent
in spreading simulations. Indeed, the estimate for pc given in
�9�, pc=0.075 582�0.000 017 for the bchc lattice, has an
error of about 60 times larger than ours. Nevertheless, very
good agreement was found in �9� when comparing with the
leading log terms only. We believe that this is a bit fortuitous.

The error estimates in Eq. �4� are of course subjective,
which is true for all extrapolations and, in particular, also for
any critical exponents. To support the above estimates we
show in Fig. 5 our values of N�t�, after subtracting from them
the best fits using Eq. �1�. In spite of the very small error bars
of the raw data, the fits are perfect for t�20. The lines seen
in Fig. 5 correspond to pc��pc, with �pc given in Eq. �4�.

Unfortunately the fits used in Fig. 5, although presumably
correct for large values of t and therefore suitable for esti-
mating pc, are not to be taken too seriously. This is seen from
the fact that using the same values of t0 and t1 would give
rather poor fits for the other two observables. As a good
compromise we used t0=0.5, t1=1.0 in Figs. 2–4. We see
that none of the three fits is perfect, but all are quite reason-
able and definitely give a big improvement over the leading

term. Thus we can safely conclude that the field-theoretic
calculations of �4� are verified by our simulations.

Equation �1� was indeed obtained in Ref. �4� by first de-
riving parametric forms Xi=Xi�w� and t= t�w�, and then in-
verting the latter to w=w�t�. Since the parametric represen-
tations are only to lowest orders, the inversion introduces
errors which, although subdominant asymptotically, might be
numerically large. Comparing directly with the parametric
expressions �Eq. �15� and the first lines of Eqs. �25�, �31�,
and �44� in Ref. �4�� gives indeed significant further im-
provements for small t.

Before concluding, let us make two remarks. The first
concerns hyperscaling. Usually, hyperscaling is formulated
in terms of critical exponents. Writing N�t�	 t	 , P�t�
	 t−
 , R2�t�	 tz at p= pc, one expects for d�dc=4 that
dz /2=2
+	. This is no longer true for d�4 where 	=0,

=1, and z=2, but it still should hold in d=4. Written in
terms of the observables themselves, hyperscaling is equiva-
lent �for d�4� to

P2�t�Rd�t�/N�t� � const. �5�

From Eq. �1� we see that this should be violated by logarith-
mic terms at d=4,

P2�t�Rd�t�/N�t� 	 �ln t�2�2+2�3−�1 = ln t . �6�

We see in Fig. 6 that this product indeed increases strongly
with t, but the increase is far from linear in ln t. Thus, next-
to-leading terms again are important. The corrections given
in Eq. �1� give a big improvement, although they are not
perfect. An interesting observation is that this product de-
pends very weakly on p, making it thus an ideal test object
for further nonleading logarithmic corrections.

The second remark concerns another product of N�t�,
P�t�, and R�t�. Using Eq. �1� we can form one combination
�and of course all its powers� which contains, up to the order
considered in Eq. �1�, no logarithmic corrections at all. It is
given by 
iXi

�i with �i�i�i=�i�i�iai=0. Numerically, we
thus obtain that
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FIG. 5. �Color online� Difference between the average number
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N0.28931�t��R�t�
t1/2 
10.8427

/�tP�t�� � const . �7�

We plot this combination in Fig. 7, together with a fit of the
type a+b / t�. Numerically we found �=0.75. Of course one
should not take this exponent very serious �it could well be
that the correct exponent is 1/2 or 1�, but it seems rather
convincing that logarithmic terms are completely absent. No-
tice that this is not trivial. A priori, we should have expected

terms 	O��ln ln t / ln t�2 , ln ln t / ln2 t ,1 / ln2 t�. This might
hint at a special structure of the renormalization-group flow,
although this does not seem likely from the way in which Eq.
�1� was derived �10�.

III. SUMMARY

We have shown that improved algorithms for cluster
spreading allow, even with rather modest effort �the total
CPU time used for this Brief Report was about 1 week on a
fast PC�, a rather stringent verification of logarithmic correc-
tions at the upper critical dimension of one of the standard
nonequilibrium critical phenomena. A prerequisite for this
was, however, the availability of more than the leading log
terms. If we could have had only the leading terms available
for comparison �as was the case for the steady-state equation
of state studied in �9��, even with much more CPU time, only
1 order-of-magnitude verification would have been possible.
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